top of page

Craft, activity and play ideas

Public·8 members
Hunter Lee
Hunter Lee

Computer Networks And Internets Comer Pdf 15 [UPDATED]

331: STUDY DATA COMMUNICATIONS AND NETWORKS. \uf07d 1. Discuss computer networks (5 hrs) \uf07d 2. Discuss data communications (15 hrs)\n \n \n \n \n "," \n \n \n \n \n \n Transmission Modes Serial Transmission \uf0a7 One bit is transmitted on a circuit at a time \uf0a7 Usually there is one transmit circuit and one receive circuit.\n \n \n \n \n "," \n \n \n \n \n \n 1 Long-Distance Communication. 2 Illustration of a Carrier Carrier \u2013Usually a sine wave \u2013Oscillates continuously \u2013Frequency of carrier fixed.\n \n \n \n \n "," \n \n \n \n \n \n 1 Ch 5 Local Asynchronous Communication (RS-232).\n \n \n \n \n "," \n \n \n \n \n \n Chapter 4 Computer Networks \u2013 Part 1\n \n \n \n \n "," \n \n \n \n \n \n Data Communication. 2 Data Communications Data communication system components: Message Message Information (data) to be communicated. Sender Sender Device.\n \n \n \n \n "," \n \n \n \n \n \n Chapter-4\/5-1CS331- Fakhry Khellah Term 081 Chapter 4 (Only 4.2 \u2013 4.3) Digital Transmission.\n \n \n \n \n "," \n \n \n \n \n \n DATA COMM & COMPUTER NETWORKING. Data Communications.. \uf09b are the exchange of data between two devices via some \uf09b form of transmission medium such as a.\n \n \n \n \n "," \n \n \n \n \n \n Chapter 5: Local Asynchronous Communication 1. Bit-wise data transmission 2. Asynchronous communication 3. Sending bits with electric current 4. Standard.\n \n \n \n \n "," \n \n \n \n \n \n \u00a9 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.\n \n \n \n \n "," \n \n \n \n \n \n William Stallings Data and Computer Communications 7 th Edition Chapter 1 Data Communications and Networks Overview.\n \n \n \n \n "," \n \n \n \n \n \n ECS 152A 4. Communications Techniques. Asynchronous and Synchronous Transmission Timing problems require a mechanism to synchronize the transmitter and.\n \n \n \n \n "," \n \n \n \n \n \n Digital Transmission. 2 A Taxonomy of Transmission Modes Defn: A transmission mode is the manner in which data is sent over the underlying medium Transmission.\n \n \n \n \n "," \n \n \n \n \n \n \u00a9 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.\n \n \n \n \n "," \n \n \n \n \n \n CSC 335 Data Communications and Networking\n \n \n \n \n "," \n \n \n \n \n \n The Principle of Electronic Data Serial and Parallel Data Communication Transmission Rate Bandwidth Bit Rate Parity bits.\n \n \n \n \n "," \n \n \n \n \n \n \u00a9 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.\n \n \n \n \n "," \n \n \n \n \n \n \u00a9 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.\n \n \n \n \n "," \n \n \n \n \n \n 1 Transmission of Digital Data : Interface and Modems.\n \n \n \n \n "," \n \n \n \n \n \n \u00a9 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.\n \n \n \n \n "," \n \n \n \n \n \n AS Computing Data transmission. Basic data transmission Baud The rate that the voltage changes is called the Baud. If the voltage changes 10 times every.\n \n \n \n \n "," \n \n \n \n \n \n Digital Interfaces An interface links two devices Interface Standards define: \u2013 mechanical specifications - how many wires & connector type \u2013electrical.\n \n \n \n \n "," \n \n \n \n \n \n FUNDAMENTALS OF NETWORKING\n \n \n \n \n "," \n \n \n \n \n \n Unit 1 Lecture 4.\n \n \n \n \n "," \n \n \n \n \n \n CSC 335 Data Communications and Networking Lecture 4b: Communication and Multiplexing Dr. Cheer-Sun Yang.\n \n \n \n \n "," \n \n \n \n \n \n Chapter 7 Channel organization. Group members \uf075 Bilal Ahmed \uf075 Mehmal javed \uf075 Faisal khan janjua \uf075 Harris bashir.\n \n \n \n \n "," \n \n \n \n \n \n \u00a9 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.\n \n \n \n \n "," \n \n \n \n \n \n CSE, IT\u2013 III SEM Course Name-DAC Topic- Communication modes.\n \n \n \n \n "," \n \n \n \n \n \n 1 Business Telecommunications Data and Computer Communications Chapter 6 The Data Communications Interface.\n \n \n \n \n "," \n \n \n \n \n \n Data Communication & Networking. Data communication Not to be confused with telecommunication \u2013Any process that permits the passage from a sender to one.\n \n \n \n \n "," \n \n \n \n \n \n COMPUTER NETWORKS Lecture-3 Husnain Sherazi. Review Lecture 2 \uf077 Resource Sharing \uf077 Growth of the Internet \u2013 Linear Scale \u2013 Log Scale \uf077 Tools for Probing.\n \n \n \n \n "," \n \n \n \n \n \n Week 7 Managing Telecommunications & Networks. Effective communications are essential to organizational success Define the terms communications and telecommunications.\n \n \n \n \n "," \n \n \n \n \n \n Serial Communications\n \n \n \n \n "," \n \n \n \n \n \n (1B) Methods of representing and measuring data electronically\n \n \n \n \n "," \n \n \n \n \n \n William Stallings Data and Computer Communications\n \n \n \n \n "," \n \n \n \n \n \n Circuit Switching Circuit switching refers to a communication mechanism that establishes a path between a sender and receiver with guaranteed isolation.\n \n \n \n \n "," \n \n \n \n \n \n Transmission Modes The term transmission mode to refer to the manner in which data is sent over the underlying medium Transmission modes can be divided.\n \n \n \n \n "," \n \n \n \n \n \n Local Asynchronous Communication (RS-232)\n \n \n \n \n "," \n \n \n \n \n \n DIGITAL DATA COMMUNICATION TECHNIQUES\n \n \n \n \n "," \n \n \n \n \n \n Lecture 4 Continuation of transmission basics Chapter 3, pages 75-96\n \n \n \n \n "," \n \n \n \n \n \n DIGITAL DATA COMMUNICATION TECHNIQUES\n \n \n \n \n "," \n \n \n \n \n \n DIGITAL DATA COMMUNICATION TECHNIQUES\n \n \n \n \n "," \n \n \n \n \n \n Data Communication.\n \n \n \n \n "," \n \n \n \n \n \n CHAPTER SERIAL PORT PROGRAMMING. Basics of Serial Communication Computers transfer data in two ways: \u25e6 Parallel \uf096 Often 8 or more lines (wire.\n \n \n \n \n "," \n \n \n \n \n \n Chapter 6 Transmission of Digital Data Interfaces and Modems\n \n \n \n \n "," \n \n \n \n \n \n Chapter 9 Transmission Modes\n \n \n \n \n "," \n \n \n \n \n \n communications system\n \n \n \n \n "," \n \n \n \n \n \n Serial Communications\n \n \n \n \n "," \n \n \n \n \n \n William Stallings Data and Computer Communications\n \n \n \n \n "," \n \n \n \n \n \n Introduction Communication Modes Transmission Modes\n \n \n \n \n "]; Similar presentations

computer networks and internets comer pdf 15

Table of contents : Preface --Part 1: Introduction And Internet Applications: --Introduction And Overview: --Growth of computer networking --Why networking seems complex --Five key aspects of networking --Public and private parts of the Internet --Networks, interoperability, and standards --Protocol suites and layering models --How data passes through layers --Headers and layers --ISO and the OSI seven layer reference model --Remainder of the text --Summary --Internet Trends: --Introduction --Resource sharing --Growth of the Internet --From resource sharing to communication --From text to multimedia --Recent trends --From individual computers to Cloud computing --Summary --Internet Applications And Network Programming: --Introduction --Two basic Internet communication paradigms --Connection-oriented communication --Client-server model of interaction --Characteristics of clients and servers --Server programs and server-class computers --Requests, responses, and direction of data flow --Multiple clients and multiple servers --Server identification and demultiplexing --Concurrent serves --Circular dependencies among servers --Peer-to-peer interactions --Network programming and the socket API --Sockets, descriptors, and network I/O --Parameters and the socket API --Socket calls in a client and server --Socket functions used by both client and server --Connect function used only by a client --Socket functions used only by a server --Socket functions used with the message paradigm --Other socket functions --Sockets, threads, and inheritance --Summary --Traditional Internet Applications: --Introduction --Application-layer protocols --Representation and transfer --Web protocols --Document representation with HTML --Uniform resource locators and hyperlinks --Web document transfer with HTTP --Caching in browsers --Browser architecture --File transfer protocol (FTP) --FTP communication paradigm --Electronic mail --Simple mail transfer protocol (SMTP) --ISPs, mail servers, and mail access --Mail access protocols (POP, IMAP) --Email representation standards (RFC2822, MIME) --Domain name system (DNS) --Domain names that begin with a service name --DNS hierarchy and server model --Name resolution --Caching in DNS servers --Types of DNS entries --Aliases and CNAME resource records --Abbreviations and the DNS --Internationalized domain names --Extensible representations (XML) --Summary --Part 2: Data Communication Basics: --Overview Of Data Communications: --Introduction --Essence of data communications --Motivation and scope of the subject --Conceptual pieces of a communications system --Subtopics of data communications --Summary --Information Sources And Signals: --Introduction --Information sources --Analog and digital signals --Periodic and aperiodic signals --Sine waves and signal characteristics --Composite signals --Importance of composite signals and sine functions --Time and frequency domain representations --Bandwidth of an analog signal --Digital signals and signal levels --Baud and bits per second --Converting a digital to analog --Bandwidth of a digital signal --Synchronization and agreement about signals --Line coding --Manchester encoding used in computer networks --Converting an analog signal to digital --Nyquist theorem and sampling rate --Nyquist theorem and telephone system transmission --Nonlinear encoding --Encoding and data compression --Summary --Transmission Media: --Introduction --Guided and unguided transmission --Taxonomy by forms of energy --Background radiation and electrical noise --Twisted pair copper wiring --Shielding: coaxial cable and shielded twisted pair --Categories of twisted pair cable --Media using light energy and optical fibers --Types of fiber and light transmission --Optical fiber compared to copper wiring --Infrared communication technologies --Point-to-point laser communication --Electromagnetic (radio) communication --Signal propagation --Types of satellites --Geostationary Earth Orbit (GEO) satellites --GEO coverage of the earth --Low Earth Orbit (LEO) satellites and clusters --Tradeoff's among media types --Measuring transmission media --Effect of noise on communication --Significance of channel capacity --Summary --Reliability And Channel Coding: --Introduction --Three main sources of transmission errors --Effect of transmission errors on data --Two strategies for handling channel errors --Block and convolutional error codes --Example block error code: single parity checking --Mathematics of block error codes and (n, k) notation --Hamming distance: a measure of a code's strength --Hamming distance among strings in a codebook --Tradeoff between error detection and overhead --Error correction with row and column (RAC) parity --16-bit checksum used in the Internet --Cyclic Redundancy Codes (CRCs) --Efficient hardware implementation of CRC --Automatic repeat request (ARQ) mechanism --Summary --Transmission Modes: --Introduction --Taxonomy of transmission modes --Parallel transmission --Serial transmission --Transmission order: bits and bytes --Timing of serial transmission --Asynchronous transmission --RS-232 asynchronous character transmission --Synchronous transmission --Bytes, blocks, and frames --Isochronous transmission --Simplex, half-duplex, and full-duplex transmission --DCE and DTE equipment --Summary --Modulation And Modems: --Introduction --Carriers, frequency, and propagation --Analog modulation schemes --Amplitude modulation --Frequency modulation --Phase shift modulation --Amplitude modulation and Shannon's theorem --Modulation, digital input, and shift keying --Phase, shift keying --Phase shift and a constellation diagram --Quadrature amplitude modulation --Modem hardware for modulation and demodulation --Optical and radio frequency modems --Dialup modems --OAM applied to dialup --V-32 and V-32bis dialup modems --Summary --Multiplexing And Demultiplexing (Channelization): --Introduction --Concept of multiplexing --Basic types of multiplexing --Frequency division multiplexing (FDM) --Using a range of frequencies per channel --Hierarchical FDM --Wavelength division multiplexing (WDM) --Time division multiplexing (TDM) --Synchronous TDM --Framing used in the telephone system version of TDM --Hierarchical TDM --Problem with synchronous TDM: unfilled slots --Statistical TDM --Inverse multiplexing --Code division multiplexing --Summary. Access And Interconnection Technologies: --Introduction --Internet access technology: upstream and downstream --Narrowband and broadband access technologies --Local loop and ISDN --Digital subscriber line (DSL) technologies --Local loop characteristics and adaptation --Data rate of ADSL --ADSL installation and splitters --Cable modem technologies --Data rate of cable modems --Cable modem installation --Hybrid fiber coax --Access technologies that employ optical fiber --Head-end and tail-end modem terminology --Wireless access technologies --High-capacity connections at the Internet core --Circuit termination, DSU/CSU, and NIU --Telephone standards for digital circuits --DS terminology and data rates --Highest capacity circuits (STS standards) --Optical carrier standards --C suffix --Synchronous optical network (SONET) --Summary --Part 3: Packet Switching And Network Technologies: --Local Area Networks: Packets, Frames, And Topologies: --Introduction --Circuit switching and analog communication --Packet switching --Local and wide are packet networks --Standards for packet format and identification --IEEE 802 model and standards --Point-to-point and multi-access networks --LAN topologies --Packet identification, demultiplexing, MAC addresses --Unicast, broadcast, and multicast addresses --Broadcast, multicast, and efficient multi-point delivery --Frames and framing --Byte and bit stuffing --Summary --IEEE MAC Sublayer: --Introduction --Taxonomy of mechanisms for shared access --Static and dynamic channel allocation --Channelization protocols --Controlled access protocols --Random access protocols --Summary --Wired LAN Technology (Ethernet And 802-3): --Introduction --Venerable Ethernet --Ethernet frame format --Ethernet frame type field and demultiplexing --IEEE's version of Ethernet (802-3) --LAN connections and network interface cards --Ethernet evolution and thicknet wiring --Thinnet Ethernet wiring --Twisted pair Ethernet wiring and hubs --Physical and logical Ethernet topology --Wiring in and office building --Ethernet data rates and cable types --Twisted pair connectors and cables --Summary --Wireless Networking Technologies: --Introduction --Taxonomy of wireless networks --Personal Area Networks (PANs) --ISM wireless bands used by LANs and PANs --Wireless LAN technologies and Wi-Fi --Spread spectrum techniques --Other wireless LAN standards --Wireless LAN architecture --Overlap, association, and 802-11 frame format --Coordination among access points --Contention and contention-free access --Wireless MAN technology and WiMax --PAN technologies and standards --Other short-distance communication technologies --Wireless WAN technologies --Micro cells --Cell clusters and frequency reuse --Generations of cellular technologies --VSAT satellite technology --GPS satellites --Software defined radio and the future of wireless --Summary --Repeaters, Bridges, And Switches: --Introduction --Distance limitation and LAN design --Fiber modem extensions --Repeaters --Bridges and bridging --Learning bridges and frame filtering --Why bridging works well --Distributed spanning tree --Switching and layer 2 switches --VLAN switches --Multiple switches and shared VLANs --Importance of bridging --Summary --WAN Technologies And Dynamic Routing: --Introduction --Large spans and wide area networks --Traditional WAN architecture --Forming A WAN --Store and forward paradigm --Addressing in A WAN --Next-hop forwarding --Source independence --Dynamic routing updates in A WAN --Default routes --Forwarding table computation --Distributed route computation --Shortest paths and weights --Routing problems --Summary --Networking Technologies Past And Present: --Introduction --Connection and access technologies --LAN technologies --WAN technologies --Summary --Part 5: Internetworking: --Internetworking: Concepts, Architecture, And Protocols: --Introduction --Motivation for internetworking --Concept of universal service --Universal service in a heterogeneous world --Internetworking --Physical network connection with routers --Internet architecture --Intranets and Internets --Achieving universal service --Virtual network --Protocols for internetworking --Review of TCP/IP layering --Host computers, routers, and protocol layers --Summary --IP: Internet Addressing: --Introduction --Move to IPv6 --Hourglass model and difficulty of change --Addresses for the virtual Internet --IP addressing scheme --IP address hierarchy --Original classes of IPv4 addresses --IPv4 dotted decimal notation --Authority for addresses --IPv4 subnet and classless addressing --Address mas


Welcome to the group! You can connect with other members, ge...


bottom of page